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Abstract 

The lattice energy of the one-dimensionally modulated 
intermediate-temperature phase of thiourea has been 
calculated by direct numerical integration over the 
modulation coordinate, using a new modification of the 
program WMIN. Two different descriptions are used 
for the N - H . . . S  interactions. The first, a purely 
electrostatic model, gives an energy for the modulated 
phase which is higher than that of either the para- 
electric high-temperature, or the ferroelectric low- 
temperature phase. The introduction of a Lippincott- 
Schroeder hydrogen-bonding potential is necessary to 
account for the lowering of the energy on cooling 
through the two phase transitions. The results indicate 
that the modulation is driven by the hydrogen-bonding 
network in the crystal. 

Introduction 

Thiourea (CN2H4S) undergoes several phase transitions 
on cooling (Denoyer & Currat, 1986). Between 202 
and 169 K, an incommensurately modulated phase 
occurs with a wavevector q = b'b*, where ~ varies with 
temperature from 1/9 to 1/7. 

In order to gain understanding of the occurrence of 
the modulation, we have redetermined the modulated 
structure using a rigid-molecule displacement model, 
which greatly reduces the number of parameters to be 
determined (Gao, Gajhede, Mallinson, Petricek & 
Coppens, 1988; Petricek, Coppens & Becker, 1985). 
The four-dimensional symmetry of the modulated phase 
P:P2~ma:-l-11 was found to be lower than predicted 
by Landau theory for a Pnma high-temperature phase. 
The major molecular displacements are a rotation 
around the b axis and a displacement in the a-e plane. 
These are also the main differences between the 
high-temperature paraelectric and the low-temperature 
ferroelectric phases. The amplitudes of the displace- 
ments increase on cooling in the stability range of the 
modulation, and seem to approach the displacements 
occuring in the ferroelectric phase close to the lower 
boundary of the stability range, indicating that the 
modulated phase can be considered as a gradual 
transition from the paraelectric to the ferroelectric 
structure. 
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To gain insight into the mechanism of the modula- 
tion, we have calculated the lattice energies of all three 
phases using the pairwise interaction approximation. 
Our method uses the four-dimensional symmetry 
description of modulated structures (de Wolff, Janssen 
& Janner, 1981), according to which all geometries 
occurring in the crystal are found along one period of 
the fourth-dimension coordinate t. We have modified 
the program WMIN (Busing, 1981) to allow a general 
treatment of one-dimensionally modulated structures. 

Spectroscopic experiments (Takahashi, Schrader, 
Meier & Gottlieb, 1967; Bleckmann, Schrader, Meier & 
Takahashi, 1971), as well as the crystal structures 
indicate the existence of an N--H.. .S hydrogen- 
bonding network in the thiourea crystals. Its contribu- 
tion to the lattice energy has been treated according to 
two models, the second of which includes a specific 
potential function for hydrogen bonding. 

Thiourea structures 

The crystal structures of paraelectric and ferroelectric 
phases have been determined by X-ray and neutron 
diffraction (Truter, 1967; Goldsmith & White, 1959; 
Elcombe & Taylor, 1968). The crystallographic data 
are listed in Table 1, together with those of the 
modulated phase. The atomic coordinates from the 
neutron study (Elc0mbe & Taylor, 1968) and the 
coordinates and displacement amplitudes of the 
modulated phase are listed in Tables 2(a) and 2(b) 
respectively. The H-atom positions in the modulated 
phase were obtained by extending the experimental 
N - H  bond lengths to 1.01/~, the average of the 
ferroelectric phase neutron results. 

Fig. 1 shows the packing diagrams of the para- and 
ferroelectric phases. The molecular plane is perpen- 
dicular to the mirror planes of the space groups Pnma 
and P2~ma respectively, with the C and S atoms located 
in the mirror planes. In the crystals of the intermediate 
phase, stable below 202K, the two independent 
molecules have somewhat different modulations. The 
crystals belong to the superspace group P:P2~ma: 
- 1 - 1 1 .  The longitudinal b-axis modulation wave 
represents a slight displacement of the molecules from 
the mirror planes occupied in the high- and low- 
temperature phases. 

© 1989 International Union of Crystallography 
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Table 1. Space group and  cell constants ( A ) f o r  the 
thiourea phases  

Phase 
Paraelectric* 
Modulated 
Ferroelectrict 

Space group a b c 
Pnma 7.655 8.537 5.520 

P:P2~ma: -1-11 7.540 8.528 5.459 
P21ma 7.516 8.519 5.494 

* Truter (1967). 
t Goldsmith & White (1959). 

Table 2. Fractional  coordinates and  displacement 
ampli tudes 

(a) Fractional coordinates of conventional phases* 
x y z 

Paraelectric phase 
S -0.0073 0.2500 0.1148 
C 0.0906 0.2500 -0.1635 
N(I) 0-1307 0.3829 -0.2773 
H(I 1) 0.1842 0.3761 -0.4405 
H(12) 0.0955 0.4870 -0-2054 

Ferroelectric phase 
S 0.0062 0.2500 0.0954 
C 0.0733 0.2500 -0.2045 
N( I ) 0.1000 0.3837 -0.3256 
H( I 1) 0.1365 0.3805 -0.5006 
H(12) 0.0772 0.4878 -0.2448 
S' 0.0272 -0.2500 -0.1285 
C' -0-0985 -0.2500 0.1360 
N(1') -0.1475 -0-3844 0.2412 
H(I 1') -0.2169 -0-3802 0.4006 
H(I 2') -0.1028 -0.4886 0.1771 

(b) Average structure and modulation amplitudest 
x y z 

S -0.0071 0.2500 0.1154 
C 0.0892 0.2500 -0-1661 
N(I) 0.1285 0.3830 -0-2793 
H(I 1) 0.1796 0-3728 -0.4494 
H(12) 0.0952 0.4874 -0.2047 

Translations (A) Rotations (o) 
a b c a b 

Molecule 1 
First harmonic -0.128 0.029 0.103 0.20 -6.21 
Second harmonic -0.009 -0.009 0.015 -0.25 -0.38 

c 

0.36 
0.77 

Molecule II 
First harmonic -0.112 0.002 0. 119 0.92 4.70 0.22 
Second harmonic -0-019 0.009 0.006 0.25 0.18 0.51 

* Elcombe & Taylor (1968). 
t Gao, Gajhede, Mallinson, Petricek & Coppens (1988). 

The types of hydrogen bonds in the network are 
indicated in Fig. 1. In the noncentrosymmetric phase 
two center-of-symmetry-related hydrogen bonds are no 
longer equivalent, leading to six, rather than three, 
different hydrogen bonds. 

Computational method: integration over the 
modulation parameter t 

In the atom-atom potential model, the lattice energy 
is expressed as the sum of pairwise Coulombic, 
6-12 Lennard-Jones-type and hydrogen-bonding 
contributions" 

Wla  t --~ ( l / 2 Z ) Y . i Y . j ~ i ( q i q J r i i  

- -A iAJr6 j  + B iBJr] ) )  + WHB. (i) 

Here Z is the number of formula units per asymmetric 
unit, the q's represent the atomic charges, A and B are 
the Lennard-Jones nonbonded coefficients and rij is the 
distance between atoms i andj .  The index i is over one 
unit cell and j over the whole crystal. The hydrogen- 
bonding energy WHB will be discussed later. Con- 
vergence of the long-range Coulombic contributions is 
achieved by the Ewald-Bertaut-Williams method 
implemented in the program W M I N ,  which includes a 
combined summation over direct and reciprocal space 
(Bertaut, 1952; Williams, 1971). 

Since the interatomic distances rti vary from unit cell 
to unit cell in the incommensurately modulated crystal, 
an additional integration becomes necessary. In the 
four-dimensional symmetry description this integration is 
over the variable t in the fourth dimension, which has a 
periodicity of one. An integration from t = 0 to t = 1 
includes all distances rii existing in the modulated 
three-dimensional crystal. The position of an atom i in 
the unit cell n in three-dimensional space R 3 is given by" 

rni = r ° + n + ~t{Utsin[2rdq.(g i + n ) -  q~t]} (2a) 

a 

D 

(a) 

Fig. 1. (a) The structure of the paraelectric phase. The hydrogen 
bonds, A,B C,D and E,F, are pairwise equivalent in the 
paraelectric phase, but differ in the low-temperature ferroelectric 
phase. (b) The structure of the ferroelectric phase. In order of 
descending size, circles represent S, N, C and H atoms. 
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where l is the order of the harmonic, U t is the 
modulation amplitude vector, q the wavevector of the 
modulation, g~ the phase reference point for the 
molecule to which atom i belongs and ~0 t the phase of the 
Ith harmonic. In four-dimensional space, each atom 
position is a string in the direction of the basis vector e 
perpendicular to R3 (de Wolff, 1974). For a unit cell 
defined by n = 0, the atom position is described by: 

ri(xlxzxat ) = ri(XlXzX30 ) + ~4Ut(ulu2u30) 

× sin[2zr(lq.g i + t ) -  ~0 t] (2b) 

where t is the distance from R3 in the fourth dimension. 
The positions of symmetry-related atoms are obtained 
by application of the symmetry operation: 

r' = Rr + s 
and 

t' = et + 6 -  q.s (3) 

where R and e are the rotational and s and 6 the 
translational components of the symmetry element. 

Thus r~ / = Ir i--r i l  is a periodic function of t, and 
a numerical method may be used to integrate the 
pairwise interactions from t = 0 to t = 1. With the 
extended Simpson rule (Press, Flannery, Teukolsky & 
Vetterling, 1986), the average interaction energy Wa~e is 
obtained as: 

: (1/N)ll/3f(0) + 4/3f( l /N) + 2/3f(2/N) 

+ 4/3f(3/N) + ... + 213f(N-2/N)  

+ 4/3f(N--1/N) + 1/3f(1)] + A(1/N4). (4) 

N is the number of intervals between t = 0 and t = 1 
and the error A is of the order 1/N 4. This expression is 
applied separately to each of the types of pairwise 
interactions. The integration error is estimated from the 
convergence of the series with increasing N. In our 
work, the results of two calculations with N/2 and N 
intervals was smaller than 0.00001 kcal mol- 
(1 kcal mol -~ = 4.1868 kJ mol -l) with N values which 
never exceeded 1024. 

For the reciprocal space summation both main and 
satellite reflections are to be included. The lattice energy 
'structure factor' is a function of reciprocal space vector 
Q = H + m q  (where H refers to 'main' and mq to 
mth-order 'satellite'), and, in analogy with the X-ray 
case (Petricek, Coppens & Becker, 1985), is expressed 
a s :  

Fp(Q) = ~iPiYsexp{ZTri[Q.rSi- mesq.gi + m(6s-q.ss)]  } 

4 1 

× ~" H J-m,  {27r .U~(k )  
ml,m2,...mt=-4 k = I 

x expt--irnkg~(k)] }, (5) 

in which the summation subscripts are restricted by the 

expression m = ml + 2m2+ .,.lmt. In expression (5)the 
Pi are either the net atomic charges (Coulomb energy) 
or dispersion coefficients (dispersion energy). The 
summations over i and s are over the number of atoms 
in the asymmetric unit and the number of symmetry 
operations respectively, gi is the phase reference point 
of the rigidly displaced molecule to which atom i 
belongs, which is usually taken to be the center of mass. 
U ~ and 2 ~ are the modulation magnitude and phase and 
J ,  is a Bessel function of order n. The index I represents 
the order of harmonic displacement wave (less than five 
in our program, not larger than two in the case of 
thiourea), m values are unlimited; however, in thiourea 
only values up to m = 2 gave significant contributions. 

Force-f ield and hydrogen-bonding  models  

The atomic charges used in this study were obtained by 
Crowder, Alldredge & White (1985) from a fit to the 
ab-initio electrostatic potential. They are optimized to 
reproduce the potential outside the molecular volume. 
Their values and those of the 6-12 Lennard-Jones 
coefficients used in this study are listed in Table 3. For 
the N, C and H atoms the latter are as obtained by 
Hagler, Huler & Lifson (1974)in a lattice-energy study 
of nine amide crystals, including urea. The 6-12 
nonbonded coefficients of sulfur were obtained by 
least-squares refinement to fit the experimental lattice 
energy and the structural parameters of the low- 
temperature ferroelectric phase. The oxygen 6-12 
coefficients were used as starting parameters in this 
refinement. 

A value of 106.6kJmol  -l for the enthalpy of 
thiourea was obtained from vapor pressure measure- 
ments at 384 K by de Witt, van Miltenburg & Dekruif 
(1983). Using experimental values for cp(gas) and 
cD(solid ) they derived a value o f - 1 0 7 . 8 k J m o l  -l 
( -25 .76  kcal mol -~) for the enthalpy at 293 K, from 
which the lattice energy can be obtained with the 
equation: 

Wex p = H + 2R T (6) 

where H is the experimental enthalpy, R the gas 
constant, and T the absolute temperature. 

This room-temperature lattice energy was used in our 
calculations. Though an error is introduced by not 
using the true lattice energy for the ferroelectric phase, 
test calculations showed our results not to be sensitive 
to small variations in W~at. 

The fact that reasonable calculated lattice energies 
and energy minima can be obtained without accounting 
for hydrogen bonding (Hagler, Huler & Lifson, 1974; 
Dove & Lynden-Bell, 1986) might be an indication of the 
dominance of the electrostatic contributions. However, 
in several other studies hydrogen bonding has been 
represented by specific adjustable functions (Derissen 
& Smit, 1977, 1978; Scott & Scheraga, 1966). 



YAN GAO AND PHILIP COPPENS 301 

Table 3. Atomic charges and 6-12 nonbonded 
coefficients used in the calculations 

Atomic charges are from Crowder, Alldredge & White (1985) and 6-12 
nonbonded coefficients from Hagler, Huler & Lifson (1974); I kcal 
= 4. 1868 kJ. 

q (e) A (kcal A 3 mol-i)  B (kcal A 6 mo1-1) 
S (model A)* -0.400 75.88 2868 

(model B)* -0.400 25.83 1569 
C 0.166 36.41 1723 
N -0.547 35.08 1506 
H(I) 0.349 0.00 0 
H(2) 0.316 0.00 0 

* Refined values of A and B. Parameters for the other atoms are the same 
in both models. 

In the present study we adopted two models for the 
hydrogen bonding. The nonbonded coefficients of sulfur 
were refined for each of the models. In model A, the 
hydrogen bonds were considered as an electrostatic 
interaction, following the work of Hagler, Huler & 
Lifson (1974), in which dispersive and repulsive 
interactions involving the H atom were omitted. This 
empirical treatment was recently applied successfully, 
in a slightly modified form (in which only proton- 
acceptor interactions were omitted), by Spackman 
(1986) and Spackman, Weber & Craven (1988). In 
model B, the hydrogen-bond potential was specifically 
introduced, which leads to much smaller values for the 
refined nonbonded coefficients of the S atoms (Table 3). 
The bonding energy of the S. . .H interaction, WUB, for 
each type of hydrogen bond was estimated as a 
function of the distance rs... H according to the 
Lippincott-Schroeder semiempirical function (Lippin- 
cott & Schroeder, 1955), 

WnB = --D~exp[--n*(rs....--r~)2/2rs...H] 

x exp[--(0/180)2], (7) 

in which n* is related to the S . . .H force constant 
by the expression n*-k~oro/D o, r~ being the equilib- 
rium distance of the SH bond. The empirical constant 
n* and the values of D*, k* and r* (Snyder, Schreiber & 
Spencer, 1973) are listed in Table 4. 

The stretching of the N--H bond was neglected 
because of the weakness of the N - H . . . S  bonding, 
while the interaction between N and S was treated as a 
Lennard-Jones potential. The last term in the equation 
represents the angular dependence (Hagler, Huler & 
Lifson, 1974), where 0 is the supplement of the 
N - H . . .  S angle. Since this effect turned out to be minor 
(ranging from a factor of 0.871 to 0.997 for the 
ferroelectric phase), we assumed the angular depen- 
dence in the modulated phase to be the same as in the 
ferroelectric phase, ignoring the effect of the modulation 
on the angles. For the calculation of the average phase 
the angular dependence of the paraelectric phase was 
used. The resulting energies are given in Table 5. 

The reliability of the model parameters (Table 3) was 
tested by relaxing the structure. A set of 'ideal' cell 

Table 4. Constants used in the Lippincott-Schroeder 
function 

The constants are from Snyder, Schreiber & Spencer (1973); 1 mdyn 
= 10-18 J, 1 kcal mol- '  = 4.1868 kJ mol- ' .  

n* 12 .6A -l  k~0 4.14 mdyn ]k -l 
1.334/~, D~' 63.2 kcal mol -~ 

Table 5. Hydrogen-bond lengths and calculated 
energies and force constants 

Force constant (mdyn A -~) 
Type rs...a(A) 0 ( ° )  WnB(kcal mol- ' )  Calc. Exp.* 
Paraelectric phase 
A,B 2.397 11-1 -3.23 0.118 0.138 
C,D 2.767 46.3 -0.55 0-017 0.060 
E,F 3.055 56.5 --0.13 0-004 0.032 

Average phase 
A,B 2-387 -3.37 
C,D 2.737 -0.64 
E,F 2.954 -0.21 

Modulated phase 
A 2.348-2.423 -3.37 
B 2.343-2.428 -3.34 
C 2.554-2.981 -0.71 
D 2.606-2.883 -0.69 
E ' 2.667-3.228 -0.33 
F 2.753-3.185 -0.26 

Ferroelectric phase 
A 2.354 10.5 -3.89 0.146 0.148 
B 2.415 9.6 -2.99 0.108 0.129 
C 3.038 64.8 -0.14 0.004 0-033 
D 2.549 34.5 -1.57 0.054 0.096 
E 2.669 44.7 -0.89 0.029 0.072 
F 3.360 66.8 -0-03 0.001 0.017 

* Bleckmann, Schrader, Meier & Takahashi (1971). 

Table 6. Comparison of observed and energy-optimized 
results for the ferroeleetrie phase 

Cell dimensions (A) 
Minimal energy 

Obs. Model A Model B 
a 7-516 7.214 (-0.302,4.0%)* 7.803 (0.287, 3.8%) 
b 8-519 8.020 (-0.499, 5.9%) 8.158 (-0.361, 4.2%) 
c 5.494 5.601 (0.107, 1.9%) 5.656 (0.162, 2.9%) 

Displacement from observed structure 
Molecule (I) 
Ry (o) - -  -0.138 -0.230 
T x (A) - -  0-433 -0.046 
T z (]~) - -  0.185 0.084 

Molecule (II) 
Ry (o) - -  -0.420 0.175 
T x (A) - -  0.165 -0.063 
W~ t (kcal mol ~) -26.24 -27.38 (-1.14, 4-3%)* 

-27.15 -27.87 (0.72, 2.7%) 

* Difference between observed and energy-minimized values. 

dimensions and molecular displacements was obtained 
with a modified Rosenbrock search procedure im- 
plemented in WMIN, in which a minimum lattice 
energy was reached (Table 6). The differences between 
the observed and ideal values are comparable with 
those achieved by Hagler & Lifson (1974). 

It would be desirable to use experimental charge 
densities for the calculation of the Coulombic contri- 
bution. Such an approach has been discussed recently 
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Table 7. Energy (kcal mol -I) comparison of different 
phases 

The  abbreviat ions are as follows: coul = Coulombic ,  disp = dispersive, 
rep = repulsive and lat = lattice energy. 

Phases Wco~l Waisp Wrep Wlat 
Model  A 
Paraelectric -12.13 -25.80 11.99 -25.95 
Average -12.49 -27.31 13.38 -26.42 
Modulated (~ = 0.118) -12.56 -27.35 13.49 -26.42 
Ferroeleetric -12.68 -27-53 13.97 -26.24 

Wco,~ Wd~sp Wrep WuB W~at 
Model  B 
Paraeleetric -12.13 -13.09 7-70 -7 .82  -25.34 
Average -12.49 -13.89 8.64 -8 .45  -26.19 
Modulated (~= 0.118) -12.56 -13.91 8-71 -8 .70  -26.46 
Ferroelectric -12.68 -14.01 9.05 -9.51 -27.15 

by Spackman, Weber & Craven (1988). Not only does 
it eliminate the dependence on the calculational method 
and basis set used, but it also incorporates any 
modification of the charge distribution due to the 
crystalline environment. We have used the x-formalism 
(Coppens, Guru-Row, Leung, Stevens, Becker & 
Wang, 1979) to obtain a set of experimental atomic 
charges from previously collected X-ray data on 
thiourea (Kutoglu & Scheringer, 1982). The atomic 
charge of nitrogen [ -0 .94  (7)] was found to be rather 
unrealistically negative. Moreover, the so calculated 
Coulomb energy (about - 4  kcal mol -I) was much less 
negative than that obtained with the calculated charges 
(about - 1 2  kcal mol -~, Table 7). This suggests that an 
accurate data set for thiourea is still lacking, as also 
pointed out by Weber & Craven (1987). 

Results and discussion 

The lattice energies calculated with both models A and 
B are listed in Table 7 in order of decreasing 
temperature. The Coulomb and dispersion energy 
become more, and the repulsion energy less favorable 
as the temperature is lowered through successive phase 

- 1 . 0  

- 3 . 0  

g 
x~ 

~ - 5 . 0  

- 7 . 0  

/ 

i i 

2.0  2.5 3 .0  3.5 

rs . IAI  

Fig. 2. The hydrogen-bond energy as a function of rs...H, as 
calculated with the parameters of Table 4. 1 k c a l m o l - l =  
4.1868 kJ mol-L 

transitions. The models successfully predict the total 
lattice energy of the ferroelectric phase to be lower than 
the energy of the high-temperature paraelectric phase, 
as required by thermodynamic considerations. This result 
was not achieved in a previous study (Dove & 
Lynden-Bell, 1986). For model A, the modulation 
distortion destabilizes relative to the average structure. 
This is reminiscent of the modulation occurring at the 
metal-insulator (Peierls) transition in low-dimensional 
organic salts such as TTF-TCNQ,  which is electronic- 
ally driven, but opposed by the elastic forces in the 
crystal. The lack of driving force in the non-hydrogen- 
bonding model A suggests that the specific introduction 
of hydrogen-bonding interactions (model B) is essential. 

Since the Lippincott-Schroeder potential is strongly 
dependent on S. . .H distance, it can overcome the 
destabilizing effect of the other interactions on the 
modulation. In particular its negative curvature (Fig. 2) 
leads to a stabilization of symmetrical displacements 
from an average position. As evident from the numbers 
in Table 5 this stabilization is largest for the weaker 
hydrogen bonds, which are strengthened more by being 
shortened than they are weakened by being lengthened. 
Model B predicts the modulated phase to be intermedi- 
ate in energy to the high- and low-temperature phases 
(Table 7), as required thermodynamically. 

It is possible to estimate the hydrogen-bond force 
constants from the expression k = WHBn*/rs...H. The 
resulting values (Table 5) are in good agreement with 
spectroscopic force constants given in the literature 
(Bleckmann, Schrader, Meier & Takahashi, 1971), thus 
providing further support for the model. Part of the 
differences may be attributed to Coulombic contri- 
butions which are relatively more important for the 
weaker, bent hydrogen bonds. 

Conclusions 

The calculational method for the lattice energy of 
modulated structures developed here is quite general. It 
can be applied to substitutionally modulated struc- 
tures, and is easily extended to two-dimensional 
modulations. 

In the present study the results indicate that the 
driving force for the modulation is to be sought in the 
extensive hydrogen-bonding network in thiourea. Since 
entropy effects are not included in the present treatment 
we cannot predict stability ranges; such a prediction 
can only be made on the basis of the Gibbs free energy. 
However, the calculations show that, at least in the case 
of thiourea, the thermodynamic condition that the 
low-temperature phases have the lower energy, can be 
accounted for by lattice-energy calculations. 
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Abstract 

(1R,JS)-8-Methoxy-3,3-dimethyl-2,4-dioxabicyclo- 
[3.3.0]oct-7-en-6-0ne, C9H1204, M r =  184.19, ortho- 
rhombic, P21212~, a = 18.296 (2), b = 7.8292 (7), 
c -- 6.5741 (7) ]k, V-- 941.70 ,/k 3, Z = 4, D x = 
1.299 gcm -3, 2(Mo Ka) = 0.70926 A, # = 
0 .958cm -l, F ( 0 0 0 ) = 3 9 2 ,  room temperature, final 
R(F) = 0.064 for 999 reflections. The absolute struc- 
ture was determined by measurements of intensity 
changes in three-beam positions caused by multiple- 
scattering effects. A definite result was obtained in spite 

0108-7681/89/030303-04503.00 

of the poor quality of the crystal; the title compound 
has a (1R,5S) rather than a (1S,5R) configuration as 
originally proposed. 

Introduction 

According to Bestmann & Moenius (1986) the title 
compound has a (1S,5R) absolute configuration. 
Additional chemical investigations, however, gave rise 
to doubts with respect to this correlation. As the title 
compound is the basis for the synthesis of a series of 
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